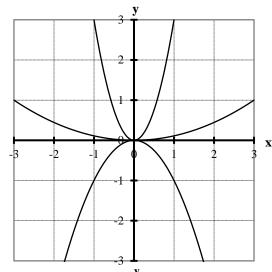
4.2. Aufgaben zu quadratischen Funktionen

Aufgabe 1: Streckung und Stauchung

a) Bestimme die Gleichungen der rechts abgebildeten Parabeln:



$$f_2(x) =$$

$$f_3(x) =$$

b) Zeichne die folgenden Parabeln ebenfalls in das Koordinatensystem:

$$f_4(x) = \frac{1}{3} \; x^2, \quad \ f_5(x) = -\frac{1}{4} \, x^2 \quad und \quad \ f_6(x) = -2x^2 \; .$$

Aufgabe 2: Verschiebung in y-Richtung

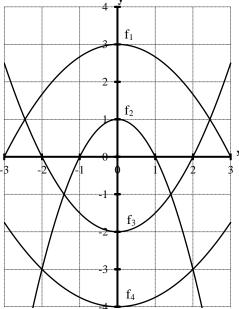
a) Bestimme die Gleichungen der rechts abgebildeten Parabeln:

$$f_1(x) =$$
______ $f_2(x) =$ _____

$$f_2(x) =$$

$$f_3(x) =$$

$$f_4(x) =$$


b) Zeichne die folgenden Parabeln ebenfalls in das Koordinatensystem:

$$f_5(x) = -\frac{1}{4}x^2 + 4,$$

$$f_6(\mathbf{x}) = \mathbf{x}^2 - 1$$

$$f_7(x) = -\frac{1}{2}x^2 + 2$$
 $f_8(x) = \frac{1}{3}x^2 - 3$

$$f_8(x) = \frac{1}{3} x^2 - 3$$

Aufgabe 3: Verschiebung in x-Richtung

a) Bestimme die Gleichungen der rechts abgebildeten Parabeln:

$$f_1(x) =$$
______ $f_4(x) =$ _____

$$f_4(\mathbf{y}) =$$

$$f_2(x) =$$

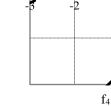
$$f_{2}(x) =$$
______ $f_{5}(x) =$ _____

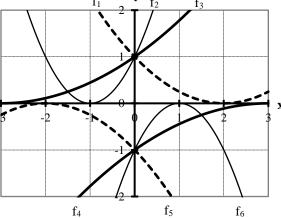
$$f_3(x) =$$

$$f_3(x) = ____$$
 $f_6(x) = _____$

b) Zeichne ebenfalls in das Koordinatensystem:

$$f_7(x) = \frac{1}{4}(x+2)^2$$
 $f_8(x) = (x-1)^2$ $f_9(x) = \frac{1}{9}(x-3)^2$


$$f_8(x) = (x-1)^2$$


$$f_9(x) = \frac{1}{9}(x-3)^2$$

$$f_{10}(x) = -\frac{1}{9}(x+3)^2$$

$$f_{11}(x) = -(x+1)^2$$

$$f_{10}(x) = -\frac{1}{9} (x+3)^2 \qquad f_{11}(x) = -(x+1)^2 \qquad f_{12}(x) = -\frac{1}{4} (x-2)^2.$$

Aufgabe 4: Scheitelpunktform

Bestimme die Gleichung der verschobenen Normalparabeln mit den folgenden Scheitelpunkten:

- a) S(3|0)
- c) S(0|2)
- e) S(4|2)
- g) S(-5|-1)

- b) S(-1|0)
- d) S(0|-7)
- f) S(-3|2)
- h) S(3|-2)

Aufgabe 5: Scheitelpunktform

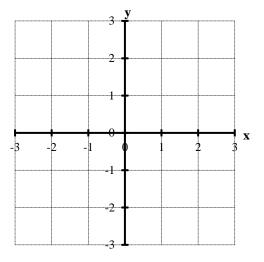
Gib den Scheitelpunkt, die Streckung bzw. Stauchung in y-Richtung und die Öffnung der Parabel an.

Skizziere dann mit Hilfe dieser Angaben das Schaubild der Parabel ausgehend vom Scheitelpunkt.

$$f_1(x) = -(x+2)^2 + 2$$

$$f_1(x) = -(x+2)^2 + 2 \qquad \qquad f_2(x) = -\frac{1}{2} \, (x+2)^2 + 2$$

$$f_3(x) = (x+2)^2 - 2$$
 $f_4(x) = 2(x+2)^2 - 2$


$$f_4(x) = 2(x+2)^2 - 2$$

$$f_5(x) = (x-2)^2 - 2$$
 $f_6(x) = 2(x-2)^2 - 2$

$$f_6(x) = 2(x-2)^2 - 2$$

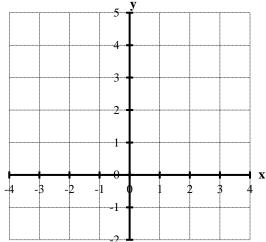
$$f_7(x) = -(x-2)^2 + 2$$

$$f_7(x) = -(x-2)^2 + 2$$
 $f_8(x) = -\frac{1}{2}(x-2)^2 + 2$

Aufgabe 6: Scheitelpunktform

Bestimme die Scheitelpunkte und zeichne die Parabeln in das Koordinatensystem rechts ein. Welche Parabel fehlt?

$$f_1(x) = -2(x+3)^2 + 5$$
 $f_2(x) = -(x+2)^2 + 1$


$$f_2(x) = -(x+2)^2 + 1$$

$$f_3(x) = -\frac{1}{2}(x + \frac{3}{2})^2 - \frac{1}{4}f_4(x) = -\frac{1}{4}x^2 - 1$$

$$f_5(x) = -\frac{1}{2}(x - \frac{3}{2})^2 - \frac{1}{4}f_6(x) = -(x - 2)^2 + 1$$

$$f_7(x) = -2(x-3)^2 + 5$$
 $f_8(x) =$

$$f_8(x) =$$

Aufgabe 7: Scheitelpunktform

Bestimme die Scheitelpunktform und den Scheitelpunkt der folgenden Parabeln.

a)
$$f(x) = x^2 + 4x + 4$$

g)
$$f(x) = 2x^2 - 4x - 16$$

g)
$$f(x) = 2x^2 - 4x - 16$$
 m) $f(x) = \frac{1}{3}x^2 - x - \frac{4}{3}$

b)
$$f(x) = x^2 + 4x + 3$$

h)
$$f(x) = 2x^2 - 6x + 4$$

n)
$$f(x) = \frac{1}{2}x^2 - x - \frac{7}{2}$$

c)
$$f(x) = x^2 + 4x - 2$$

i)
$$f(x) = -2x^2 - 4x + 2$$

i)
$$f(x) = -2x^2 - 4x + 2$$
 o) $f(x) = -\frac{1}{4}x^2 - \frac{1}{2}x + \frac{15}{4}$

d)
$$f(x) = x^2 - 2x + 1$$

i)
$$f(x) = -x^2 - 5x - 4$$

j)
$$f(x) = -x^2 - 5x - 4$$
 p) $f(x) = -\frac{1}{2}x^2 - 2x - 5$

e)
$$f(x) = x^2 - 2x$$

k)
$$f(x) = -x^2 - 4x - 4$$

k)
$$f(x) = -x^2 - 4x - 4$$
 q) $f(x) = -\frac{1}{3}x^2 + 2x - \frac{5}{3}$

f)
$$f(x) = x^2 + 6x + 8$$

r)
$$f(x) = \frac{1}{4}x^2 + \frac{3}{2}x + 2$$

Aufgabe 8: Achsenschnittpunkte

Untersuche die Parabeln aus Aufgabe 6 auf Achsenschnittpunkte.

Aufgabe 9: Achsenschnittpunkte

Untersuche die Parabeln aus Aufgabe 7 auf Achsenschnittpunkte.

Aufgabe 10: Satz von Vieta

Bestimme die Nullstellen der folgenden Funktionen durch Probieren. Berechne die Normalform $f(x) = x^2 + px + q$ durch Ausmultiplizieren. Wie lassen sich die Koeffizienten p und q aus den Nullstellen x1 und x2 berechnen?

a)
$$f(x) = (x + 1) \cdot (x + 2)$$

c)
$$f(x) = (x + 2) \cdot (x + 4)$$

e)
$$f(x) = (x + u) \cdot (x + 4)$$
 mit $u \in \mathbb{R}$

b)
$$f(x) = (x + 2) \cdot (x + 3)$$

d)
$$f(x) = (x + 3) \cdot (x + 4)$$

f)
$$f(x) = (x + u) \cdot (x + v)$$
 mit $u, v \in \mathbb{R}$

Aufgabe 11: Satz von Vieta

Bestimme die Nullstellen der folgenden Funktionen durch Probieren mit dem Satz von Vieta:

a)
$$f(x) = x^2 + 5x + 6$$

e)
$$f(x) = x^2 - 7x + 12$$

i)
$$f(x) = \frac{1}{2}x^2 + 4x + \frac{7}{2}$$

b)
$$f(x) = x^2 + 6x + 5$$

f)
$$f(x) = x^2 + x - 12$$

j)
$$f(x) = \frac{1}{3}x^2 + 2x - \frac{7}{3}$$

c)
$$f(x) = x^2 + 7x + 12$$

g)
$$f(x) = x^2 - x - 30$$

k)
$$f(x) = 2x^2 + 2x - 4$$

d)
$$f(x) = x^2 - 5x + 6$$

h)
$$f(x) = x^2 + 4x - 5$$

1)
$$f(x) = -3x^2 + 6x + 9$$

Aufgabe 12: Intervallschreibweise

Gib die folgenden Mengen in Intervallschreibweise an.

a)
$$A = \{x \in \mathbb{R}: 4 < x < 8\}$$

f)
$$F = \{x \in \mathbb{R}: 4 < x\}$$

b)
$$B = \{x \in \mathbb{R}: -2 \le x < 5\}$$

g)
$$G = \{x \in \mathbb{R}: x \le -2 \text{ oder } x \ge 3\}$$

c)
$$C = \{x \in \mathbb{R}: -100 < x \le 30\}$$

h)
$$H = \{x \in \mathbb{R}: x < -3 \text{ oder } x > 2\}$$

d)
$$D = \{x \in \mathbb{R}: 2 \le x \le 45\}$$

i)
$$I = \{x \in \mathbb{R}: x \le -5 \text{ oder } x > 5\}$$

e)
$$E = \{x \in \mathbb{R}: x \le 2\}$$

j)
$$J = \{x \in \mathbb{R}: x < -6 \text{ oder } x \ge 6\}$$

Aufgabe 13: Quadratische Ungleichungen

Vervollständige die Tabelle. Trage dazu jeweils die Bereiche ein, in denen die Funktion größer, echt größer, kleiner bzw. echt kleiner als Null ist:

f(x) =	$f(x) \ge 0$ für $x \in$	$f(x) > 0$ für $x \in$	$f(x) < 0$ für $x \in$	$f(x) \le 0$ für $x \in$
$x^2 + x - 2$	ℝ\]−2; 1[ℝ\[-2; 1]]-2; 1[[-2; 1]
$x^2 - x - 12$				
$-x^2 - x + 6$				
$-x^2 + 5x - 6$				
$x^2 + 3x + 4$				
$-\mathbf{x}^2 + 2\mathbf{x} - 1$				
$-\frac{1}{2}x^2 - \frac{5}{2}x - 3$				
$\frac{1}{2}x^2 - 5x - 12$				
$x^2 + 4x + 4$				

Aufgabe 14: Gemeinsame Punkte

Bestimme die Koordinaten aller gemeinsamen Punkte von f und g:

a)
$$f(x) = x^2 + 2x$$
 und $g(x) = x + 6$

d)
$$f(x) = x^2 + 3x + 5$$
 und $g(x) = -x + 1$

b)
$$f(x) = \frac{1}{2}x^2 + \frac{1}{2}$$
 und $g(x) = -\frac{3}{2}x - \frac{1}{2}$

e)
$$f(x) = x^2 + 1$$
 und $g(x) = x^2 - 1$

c)
$$f(x) = x^2 - 4x - 2$$
 und $g(x) = -x^2 + 2x + 6$

f)
$$f(x) = 2x^2 - 4x + 3$$
 und $g(x) = -x^2 - 2x + 2$

Aufgabe 15: Bestimmung von Funktionsgleichungen aus drei gegebenen Punkten

Bestimme die Gleichung der Parabel, die durch die Punkte P₁, P₂ und P₃ verläuft.

a)
$$P_1(0|0)$$
, $P_2(1|2)$ und $P_3(3|-6)$

d)
$$P_1(1|3)$$
, $P_2(-1|1)$ und $P_3(2|7)$

b)
$$P_1(0|-2)$$
, $P_2(2|1)$ und $P_3(-1|-\frac{11}{4})$

e)
$$P_1(1|1)$$
, $P_2(-1|3)$ und $P_3(2|3)$

c)
$$P_1(-2|2)$$
, $P_2(-1|0)$ und $P_3(3|-28)$

$$f) \ P_1(2|7), \, P_2(1|3) \ und \ P_3(0|1).$$

Aufgabe 16: Bestimmung von Funktionsgleichungen aus Scheitelpunkt und einem weiteren Punkt

Von einer Parabel sind der Scheitelpunkt S und ein weiterer Punkt P bekannt. Bestimme die Gleichung der Parabel in Normalform.

d)
$$S(-1|4)$$
 und $P(2|\frac{7}{4})$

b)
$$S(-\frac{5}{2} | \frac{9}{4})$$
 und $P(-1|0)$

f)
$$S(3|-2)$$
 und $P(1|2)$

Aufgabe 17: Anwendungsaufgaben

- a) Wie hoch und wie lang ist eine Brücke, deren Form oberhalb der x-Achse durch $y = -0.005x^2 + 0.52x$ in Metern gegeben ist?
- b) Über eine Talsenke mit dem Querschnitt $y = 0.0048x^2 0.3648x 3.0688$ in Metern wird in der Höhe 2 m über NN eine waagrecht verlaufende Brücke gespannt. Wie lang ist die Brücke und wie hoch ist sie über der tiefsten Stelle?
- c) Ein Straßentunnel hast den Querschnitt $y = -0.4x^2 + 2.6x + 6.78$ in Metern. Wie hoch und wie breit ist der Tunnel? Zwei 3 m breite und 4 m hohe Lastwagen sollen sich im Tunnel mit 1 m Sicherheitsabstand passieren können. Welchen waagrechten Abstand haben die Lastwagen dann in 4 m Höhe von der Tunnelwand?
- d) Eine mit der Geschwindigkeit v in m/s senkrecht nach oben geschossene Kugel hat nach t Sekunden die Höhe $h(t) = -5t^2 + vt$ in m über dem Abschussort erreicht. Wie lange fliegt die Kugel und welche Höhe erreicht sie, wenn sie mit v = 10 m/s bzw. v = 100 m/s abgeschossen wurde?

Aufgabe 18: Parabelscharen und Ortskurven

Untersuche die folgenden Parabelscharen auf Achsenschnittpunkte in Abhängigkeit von t und die Koordinaten des Scheitelpunktes in Abhängigkeit von t. Zeichne f_t für $t=\pm 2,\pm 1$ und 0 in ein gemeinsames Koordinatensystem mit $-5 \le x, y \le 5$. Zeichne die **Ortskurve** der Scheitelpunkte in das Koordinatensystem ein und bestimme ihre Funktionsgleichung. Die **Ortskurve** der Scheitelpunkte ist die Menge aller Scheitelpunkte der Parabelschar.

a)
$$f_t(x) = x^2 - tx \text{ mit } t \in \mathbb{R}$$

e)
$$f_t(x) = tx^2 - 2x + 1$$
 mit $t \in \mathbb{R}$

b)
$$f_t(x) = x^2 + 6x + t \text{ mit } t \in \mathbb{R}$$

f)
$$f_t(x) = (x-1)^2 + t$$

c)
$$f_t(x) = x^2 + tx + 2 \text{ mit } t \in \mathbb{R}$$

g)
$$f_t(x) = t(x-1)^2 - 1$$

d)
$$f_t(x) = x^2 - 2tx - 2t + 1 \text{ mit } t \in \mathbb{R}$$

h)
$$f_t(x) = x^2 + 2x + t$$

Aufgabe 19: Ouadratische Gleichungen

Bestimme die Lösungsmenge der folgenden Gleichungen.

a)
$$x(x + 4) + 5 = -1 - (2x + 3)$$

c)
$$(x + 7)(13x - 3) = (1 + 7x)(13 - 3x)$$

b)
$$(x + 4)(x + 2) = -x(x + 10) - 4(x - 2)$$

d)
$$(x+2)^2 + 5x + 2 = (2x-6)^2$$

Aufgabe 20: Quadratische Bruchgleichungen

Bestimme die Definitionsmenge und die Lösungsmenge der folgenden Gleichungen

a)
$$\frac{3x+2}{2} + \frac{14}{3x+1} = 6$$

e)
$$\frac{x-3}{x-1} + \frac{x-1}{x+1} = \frac{6x-2}{x^2-1}$$

b)
$$\frac{5x}{x-1} + \frac{x+1}{x+4} = \frac{21+x}{x+4}$$

f)
$$\frac{x+6}{x-6} + \frac{x-6}{x+6} = \frac{144}{x^2-36}$$

c)
$$\frac{15}{x+2} = 2 - \frac{x-5}{8}$$

g)
$$\frac{2x-1}{(x-1)(x-3)} + \frac{3x}{(x+2)(x-3)} = \frac{2x^2+3x+16}{(x-1)(x+2)(x-3)}$$

d)
$$\frac{x^2+15x}{(x+3)(x-3)} = \frac{2x+3}{x-3} - \frac{x-3}{x+3}$$

h)
$$\frac{5}{(x-4)(x-3)} + \frac{3}{(x-3)(x-2)} = \frac{x^2 + 3x + 1}{(x-4)(x-3)(x-2)}$$

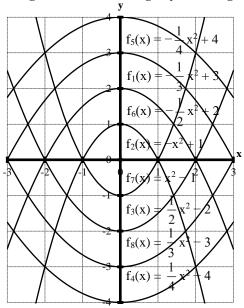
Aufgabe 21: Gemeinsame Punkte bei Kurvenscharen

Welche Bedingungen müssen für t gelten, damit die Schaubilder von f_t und g_t sich gegenseitig schneiden, berühren bzw. passieren?

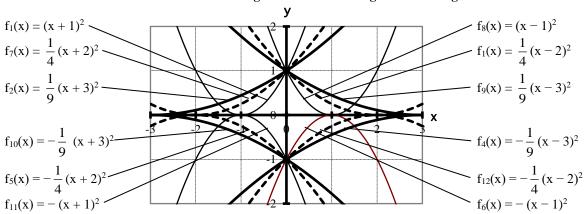
a)
$$f_t(x) = x^2 + t$$
 und $g(x) = -x + 1$

b)
$$f_t(x) = tx^2 - 1$$
 und $g(x) = x$

c)
$$f_t(x) = -x^2 - 4x - 4$$
 und $g_t(x) = x^2 - 2x + t$


4.2. Lösungen zu den Aufgaben zu quadratischen Funktionen

Aufgabe 1: Stauchung und Streckung

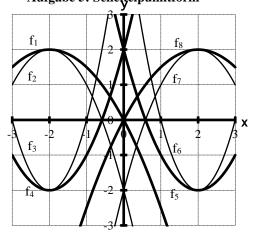

 $f_6(x) = -2x^2$

 $\int_{1}^{1} f_4(x) = \frac{1}{3} x^2$ $f_2(\mathbf{x}) = \frac{1}{9} \, \mathbf{x}^2$ $f_5(x) = -\frac{1}{4}x^2$

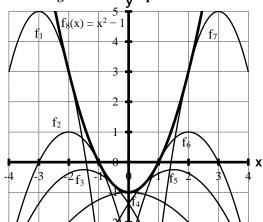
Aufgabe 2: Verschiebung in y-Richtung

Aufgabe 3: Verschiebung in x-Richtung

 $\overline{f_3}(x) = -x^2$


Aufgabe 4: Scheitelpunktform

- a) $f(x) = (x 3)^2$
- c) $f(x) = x^2 + 2$ d) $f(x) = x^2 7$


- b) $f(x) = (x + 1)^2$

- e) $f(x) = (x-4)^2 + 2$ g) $f(x) = (x+5)^2 1$ f) $f(x) = (x+3)^2 + 2$ h) $f(x) = (x-3)^2 2$

Aufgabe 5: Scheitelpunktform

Aufgabe 6: Scheitelpunktform

Aufgaben 8: Achsenschnittpunkte

 f_1 : $S_{1y}(0|-13)$ und $S_{1x1/2}(-3\pm\sqrt{\frac{5}{2}}|0)$, f_2 : $S_{2y}(0|-3)$ und $S_{2x1/2}(-2\pm1|0)$, f_3 : $S_{3y}(0|-\frac{5}{4})$, f_4 : $S_{4y}(0|-1)$, f_5 : $S_{5y}(0|-\frac{5}{4})$, f_6 : $S_{6y}(0|-3)$ und $S_{2x1/2}(-2\pm1|0)$, f_{3} : $S_{3y}(0|-\frac{5}{4})$, f_{4} : $S_{4y}(0|-1)$, f_{5} : $S_{5y}(0|-\frac{5}{4})$, f_{6} : $S_{6y}(0|-3)$ und $S_{2x1/2}(-2\pm1|0)$, f_{5} : $S_{5y}(0|-\frac{5}{4})$, f_{7} : $S_{7}(0|-\frac{5}{4})$, f_{8} : $S_{7}(0|-\frac{5}{4})$ $S_{6x1/2}(2 \pm 1|0)$, f_7 : $S_{7y}(0|-13)$ und $S_{7x1/2}(3 \pm \sqrt{\frac{5}{2}}|0)$ und f_8 : $S_{8y}(0|-1)$

Aufgaben 7 und 9: Scheitelpunkte und Achsenschnittpunkte

Aus Platzgründen sind nur Scheitelpunkte und Schnittpunkte mit der x-Achse angegeben.

a)
$$S(-2|0)$$
, doppelte NST!

g)
$$S(1|-18)$$
, $S_{x1/2}(1 \pm 3|0)$

m)
$$S(\frac{3}{2} \mid -\frac{25}{12}), S_{x1/2}(\frac{3}{2} \pm \frac{5}{2})$$

b)
$$S(-2|-1)$$
, $S_{x1/2}(-2 \pm 1|0)$

h)
$$S(\frac{3}{2}|-\frac{1}{2})$$
, $S_{x1/2}(\frac{3}{2}\pm\frac{1}{2}|0)$ n) $S(1|-4)$, $S_{x1/2}(1\pm\sqrt{8}|0)$

n)
$$S(1|-4)$$
, $S_{x1/2}(1 \pm \sqrt{8} | 0)$

c)
$$S(-2|-6)$$
, $S_{x1/2}(-2 \pm \sqrt{6}|0)$

i)
$$S(-1|4)$$
, $S_{x1/2}(-1 \pm \sqrt{2}|0)$

o)
$$S(-1|4)$$
, $S_{x1/2}(-1 \pm 4|0)$

j)
$$S(-\frac{5}{2}|\frac{9}{4})$$
, $S_{x1/2}(-\frac{5}{2}\pm\frac{3}{2}|0)$ p) $S(-2|-3)$, keine NST!

p)
$$S(-2|-3)$$
, keine NST

e)
$$S(1|-1)$$
, $S_{x1/2}(-1 \pm 1|0)$

k)
$$S(-2|0)$$
 (doppelte NST!) q) $S(3|\frac{3}{4})$, $S_{x1/2}(3\pm 2|0)$

f)
$$S(-3|-1)$$
, $S_{x1/2}(-3 \pm 1|0)$

1)
$$S(4|-\frac{1}{2})$$
, $S_{x1/2}(4 \pm 1|0)$

1)
$$S(4|-\frac{1}{2})$$
, $S_{x1/2}(4 \pm 1|0)$ r) $S(-3|-\frac{1}{4})$, $S_{x1/2}(-3 \pm 1|0)$

Aufgabe 10: Satz von Vieta

a)
$$f(x) = x^2 + 3x + 2$$

c)
$$f(x) = x^2 + 6x + 8$$

e)
$$f(x) = x^2 + (u + 4)x + 4u$$

b)
$$f(x) = x^2 + 5x + 6$$

$$f(x) = x^2 + 5x + 6$$

d)
$$f(x) = x^2 + 7x + 12$$

f)
$$f(x) = x^2 + (u + v)x + uv$$

Aufgabe 11: Satz von Vieta

a)
$$f(x) = (x + 2)(x + 3)$$

e)
$$f(x) = (x-3)(x-4)$$

i)
$$f(x) = \frac{1}{2}(x+1)(x+7)$$

b)
$$f(x) = (x + 1)(x + 5)$$

f)
$$f(x) = (x-3)(x+4)$$

j)
$$f(x) = \frac{1}{3}(x-1)(x+7)$$

c)
$$f(x) = (x+3)(x+4)$$

g)
$$f(x) = (x-6)(x+5)$$

k)
$$f(x) = 2(x-1)(x+2)$$

d)
$$f(x) = (x-2)(x-3)$$

h)
$$f(x) = (x-1)(x+5)$$

1)
$$f(x) = -3(x-3)(x+1)$$

Aufgabe 12: Intervallschreibweise

a)
$$A =]4; 8[$$

b)
$$B = [-2; 5[$$

c)
$$C = [-100; 30]$$

d)
$$D = [2; 45]$$

e)
$$E =]-\infty; 2]$$

g)
$$G = \mathbb{R} \setminus]-2; 3[$$

h)
$$H = \mathbb{R} \setminus [-3; 2]$$

i)
$$I = \mathbb{R} \setminus [-5; 5]$$

j)
$$J = \mathbb{R} \setminus [-6; 6]$$

Aufgabe 13: Quadratische Ungleichungen

f(x) =	$f(x) \ge 0$ für $x \in$	$f(x) > 0$ für $x \in$	$f(x) < 0$ für $x \in$	$f(x) \le 0$ für $x \in$
$x^2 + x - 2$	ℝ\]-2; 1[ℝ∖[−2; 1]]-2; 1[[-2; 1]
$x^2 - x - 12$	ℝ\]-3; 4[ℝ∖[-3; 4]]-3; 4[[-3; 4]
$-x^2 - x + 6$	[-3; 2]]-3; 2[ℝ\[-3; 2]	ℝ\]-3; 2[
$-x^2 + 5x - 6$	[2; 3]]2; 3[ℝ\[2; 3]	ℝ\]2; 3[
$x^2 + 3x + 4$	\mathbb{R}	\mathbb{R}	{}	{}
$-x^2 + 2x - 1$	{1}	{}	ℝ\{1}	\mathbb{R}
$-\frac{1}{2}x^2 - \frac{5}{2}x - 3$	[-3; -2]]-3; -2[ℝ\[-3; -2]	ℝ\]-3; -2[
$\frac{1}{2}x^2 - 5x - 12$	ℝ \]−2; 12[ℝ∖[−2; 12]]-2; 12[[-2; 12]
$x^2 + 4x + 4$	\mathbb{R}	ℝ\{-2}	{}	{-2}

Aufgabe 14: Gemeinsame Punkte

a)
$$S_1(-3|3)$$
 und $S_2(2|8)$

c)
$$S_1(-1|3)$$
 und $S_2(4|-2)$

b)
$$S_1(-1|1)$$
 und $S_2(-2|\frac{5}{2})$

d)
$$S_{1/2}(-2|3)$$
 (Berührpunkt)

Aufgabe 15: Bestimmung von Funktionsgleichungen aus drei gegebenen Punkten

a)
$$f(x) = -2x^2 + 4x$$

c)
$$f(x) = -x^2 - 5x - 4$$

e)
$$f(x) = x^2 - x + 1$$

b)
$$f(x) = \frac{1}{4}x^2 + x - 2$$

d)
$$f(x) = x^2 + x + 1$$

f)
$$f(x) = x^2 + x + 1$$

Aufgabe 16: Bestimmung von Funktionsgleichungen aus Scheitelpunkt und einem weiteren Punkt

a)
$$f(x) = 2x^2 - 4x + 3$$

c)
$$f(x) = -2x^2 + 4x$$

e)
$$f(x) = \frac{1}{4}x^2 - x - 1$$

b)
$$f(x) = -x^2 - 5x - 4$$

d)
$$f(x) = -\frac{1}{4}x^2 - \frac{1}{2}x + \frac{15}{4}$$
 f) $f(x) = x^2 - 6x + 7$

f)
$$f(x) = x^2 - 6x + 7$$

Aufgabe 17: Anwendungsaufgaben

- Die Brücke ist 104 m lang und 13,52 m hoch
- Die Brücke ist 100 m lang und 12 m hoch.
- Der Tunnel ist 11 m hoch und 10,5 m breit. Der waagrechte Abstand zur Tunnelwand ist 68 cm
- Die Kugeln fliegen 2 bzw. 20 Sekunden lang und erreichen eine Höhe von 5 bzw. 500 Metern.

Aufgabe 18: Parabelscharen und Ortskurven

a)
$$x_{1/2} = \frac{t}{2} \pm \frac{t}{2}$$
 und $S_t \left(\frac{t}{2} - \frac{t^2}{4} \right) \Rightarrow \text{Ortskurve } y = -x^2$

b)
$$x_{1/2} = -3 \pm \sqrt{t-9}$$
, falls $t \neq 9$ und $S_t(-3|-9+t) \Rightarrow$ Ortskurve $x = -3$

c)
$$x_{1/2} = -\frac{t}{2} \pm \sqrt{\frac{t^2}{4} - 2} \text{ , falls } t \neq \sqrt{8} \text{ und } S_t \left(-\frac{t}{2} \left| -\frac{t^2}{4} + 2 \right| \right. \Rightarrow \text{Ortskurve } y = -x^2 + 2$$

d)
$$x_{1/2} = t \pm \sqrt{t^2 + 2t - 1}$$
, falls $t \le -1 - \sqrt{2}$ oder $t \ne -1 + \sqrt{2}$ und $S_t(t | -t^2 - 2t + 1) \Rightarrow y = -x^2 - 2x + 1$

$$e) \quad x_{1/2} = \frac{1}{t} \pm \sqrt{\frac{1}{t} \left(\frac{1}{t} - 1\right)} \text{ , falls } t \neq 1 \text{ und } S_t \left(\frac{1}{t} \left| -\frac{1}{t} + 1\right|\right) \text{, falls } t \geq 0 \Rightarrow \text{Ortskurve } y = -x + 1$$

f)
$$x_{1/2} = 1 \pm \sqrt{-t}$$
, falls $t \le 0$ und $S_t(1|-t) \Rightarrow$ Ortskurve $x = 1$

g)
$$x_{1/2} = 1 \pm \frac{1}{\sqrt{t}}$$
, falls $t \ge 0$ und $S_t(1|-1) \Rightarrow$ keine Ortskurve, sondern gemeinsamer Scheitelpunkt

h)
$$x_{1/2} = -1 \pm \sqrt{1-t}$$
, falls $t \le 1$ und $S_t(-1 \mid t-1) \Rightarrow$ Ortskurve $x = -1$

Aufgabe 19: Quadratische Gleichungen

a)
$$L = \{ -3 \}$$

b)
$$L = \{ -10; 0 \}$$

c)
$$L = \{ 1; -1 \}$$

d)
$$L = \{ 1; 10 \}$$

Aufgabe 20: Quadratische Bruchgleichungen

a)
$$D = \mathbb{R} \setminus \{-\frac{1}{3}\} \text{ und } L = \{1; 2\}$$

e)
$$D = R \setminus \{1; -1\} \text{ und } L = \{0; 5\}$$

b)
$$D = \mathbb{R} \setminus \{1; -4\} \text{ und } L = \{\}$$

f)
$$D = \mathbb{R} \setminus \{6; -6\} \text{ und } L = \{ \}$$

c)
$$D = \mathbb{R} \setminus \{-2\} \text{ und } L = \{6; 13\}$$

g)
$$D = \mathbb{R} \setminus \{1; -2; 3\} \text{ und } L = \{ \}$$

d)
$$D = \mathbb{R} \setminus \{3; -3\} \text{ und } L = D$$

h)
$$D = R \setminus \{4; 3; 2\}$$
 und $L = \{\}$

Aufgabe 21: Gemeinsame Punkte bei Kurvenscharen

a)
$$x_{1/2} = -\frac{1}{2} \pm \sqrt{\frac{5}{4} - t} \Rightarrow Schnittpunkte für \ t < \frac{5}{4}$$
, Berührpunkt für \ t = $\frac{5}{4}$, keine gem. Punkte für \ t > $\frac{5}{4}$

b)
$$x_{1/2} = \frac{1}{2t} \pm \sqrt{\frac{1+4t}{4t^2}} \Rightarrow \text{Schnittpunkte für } t > -\frac{1}{4}$$
, Berührpunkt für $t = -\frac{1}{4}$, keine gem. Punkte für $t < -\frac{1}{4}$

c)
$$x_{1/2} = \frac{3}{2} \pm \sqrt{\frac{1-2t}{4}} \Rightarrow \text{Schnittpunkte für } t < \frac{1}{2}$$
, Berührpunkt für $t = \frac{1}{2}$, keine gem. Punkte für $t > \frac{1}{2}$